SUBSTITUTED CYCLONONATETRAENES AND NONAFULVENES

Gernot Boche*, Frank Heidenhain and Brigitte Staudigl

Institut für Organische Chemie der Universität München, Karlstraße 23, D-8000 München 2

Summary: Reaction of <u>cis,cis,cis,cis</u>-[9]annulene anion (1) with electrophiles (2a-d) leads to substituted <u>cis,cis,cis,cis</u>-1,3,5,7-cyclononatetraenes (<u>3a-d</u>) which are precursors for the preparation of 10- and 10,10'-donor-substituted nonafulvenes (e.g. <u>7b'-e'</u>). The influence of solvent and temperature on the ¹H-nmr spectra of the nonafulvenes <u>7b'-h'</u> has been investigated.

Althought the properties of <u>cis</u>, <u></u>

Substituted cyclononatetraenes

Reaction of <u>cis,cis,cis,cis</u>-[9] annulene anion (<u>1</u>) with Cl-X <u>2a-d</u> in tetrahydrofuran (THF) at -20° C led to the new <u>cis,cis,cis</u>-cyclononatetraenes <u>3a-d</u> in 70-90% yields.

<u>3e</u> and <u>3f</u> were accessible by methanolysis and by hydrolysis, respectively, of <u>3d</u> in THF at -10° C. The constitution of the cyclononatetraenes <u>3</u> was revealed by means of their ¹H-nmr spectra and the formation of the corresponding nine-membered ring anions <u>6a, b, c, e</u> and the dianion <u>6g</u>, e.g. with sodium bis(trimethylsilyl)amide ⁵⁾. The all-<u>cis</u> configuration was proven by valence isomerizations to give only the <u>cis</u>-dihydroindenes <u>4</u>. <u>4a,e,f</u> had been synthesized before ^{1a,6)}. <u>4b,c</u> and <u>d</u> reacted with tetracyanoethylene to the adducts <u>5</u> (mp: (<u>5b</u>) 210°C; (<u>5c</u>) 212°C; (<u>5d</u>) 205°C). <u>4b,c</u> and <u>d</u> have coupling constants J_{8,9} characteristic of the <u>cis</u> ring juncture (J_{8,9}: (<u>4b</u>) 12 Hz; (<u>4c</u>) 12 Hz; (<u>4d</u>) 12.5 Hz)⁷⁾.

10,10'-Donor-substituted nonafulvenes

Reaction of the nine-membered ring anions ⁵⁾ <u>6b,c,e</u> and of the dianion <u>6g</u> with trimethylsilylchloride in THF at -78°C led to the nonafulvenes <u>7b'-e'</u>; <u>7f'</u> was synthesized from <u>1</u> and $(CH_3)_2N-CH-OCH_3^{(8)}$ at -20°C. Structural proof resulted from the ¹H- and ¹³C-nmr spectra (Tab.1), the combustion analyses and the valence isomerization products <u>8</u>. Reaction of <u>1</u> with $(CH_3)_2N-C(OC_2H_5)_2$ resulted in a mixture of 10,10'-bis(ethoxy)nonafulvene <u>7g'</u> $(R^1=R^2=OC_2H_5)$ and 10-dimethylamino-10'-ethoxynonafulvene <u>7h'</u> $(R^1=N(CH_3)_2, R^2=OC_2H_5)$ which we were unable to separate so far ⁹.

Z	R ¹	R ²	¹ Η- n mr (δ)	¹³ C-nmr (8)
a'	н	н	ref. ³⁾	ref. ³⁾
ъי	^{сн} з	osi(CH3)3	ref. ^{5a)}	ref. ^{5a)}
с'	с _б н ₅	osi(ch ₃) ₃	0.0 (s, 9H, Si(CH ₃) ₃); 5.47 (dd, J= 13 and 3.5 Hz, 1H, H ² or H ⁷); 5.6- 6.2 (m, 6H, vinyl-H); 6.47 (d, J=13 Hz, H ⁸); 7.2-7.8 (m, 5H, aromatic H)	-
d١	оснз	osi(cH ₃) ₃	0.30 (s, 9H, Si(CH ₃) ₃); 3.63 (s, 3H, OCH ₃); 5.7-6.3 (m, 8H, viny1-H)	-
e'	osi(ch ₃) ₃	оsi(сн ₃) ₃	0.32 (s, 18H, $2Si(CH_3)_3$); 5.47 (dd, J=12.5 and 3.5 Hz, 2H, H ² , H ⁷); 5.6- 6.1 (m, 4H, H ³ -H ⁶); 6.12 (d, J=12.5 Hz, 2H, H ¹ , H ⁸)	-
ſ	н	м(сн ₃) ₂	2.85 (s, 6H, N(CH ₃) ₂ ; 5.27 (dd, J= 13.1 and 5.4 Hz, 1H, H ² or H ⁷); 5.74 (d, J=12.7 Hz, 1H, H ⁷ or H ²); 5.89 (d, J=12.7 Hz, 1H, H ¹ or H ⁸); 6.08 (m, 2H, H ⁴ , H ⁵); 6.16 (s, 1H, H ¹⁰); 6.28 (m, 2H, H ³ , H ⁶); 6.52 (d, J= 12.2 Hz, 1H, H ⁸ or H ¹)	107.5 (c9) 114.4,123.7, 127.4,127.5, 128.3,128.8, 131.7 (c1-c8) 146.4 (c10)
i'	N(CH ₃) ₂	N(CH ₃) ₂	ref. ⁴⁾	-

Tab.1: Nmr spectra of the nonafulvenes 7 in CDCl₃ at 0°C with TMS as the internal standard.

Quite remarkably, however, none of the new nonafulvenes $\underline{7b'-h'}$ showed a <u>downfield shift</u> of the ¹H-nmr signals from the olefin into the [9]annulene anion region either in donor solvents (e.g. CH₃CN) or at lower temperatures $(-97^{\circ}C, CH_2Cl_2)$ as observed by <u>Hafner</u> and <u>Tappe</u> with $\underline{7i'}$. Even in $CH_2Cl_2/$ HMPA=5:1 at $-86^{\circ}C$ the ¹H-nmr spectra of $\underline{7b'-h'}$ correspond to the olefin spectra at $0^{\circ}C$ (Tab.1). Apparently only in the case of the bis-dimethylamino compound $\underline{7i'}$ solvatation can lead to an equilibrium of the nonafulvene with its (most probably) twisted and stongly solvated ¹⁰) isomer (conformer ⁴) <u>91'</u>. This should be due both to the steric hindrance in $\underline{7i'}$ and the favorable electronic stabilization of the charges in the dipole $\underline{9i'}^{4}$. Finally, it is interesting to note that this situation corresponds largely to results which we have found in comparable systems 5, 11.

References and Notes

- a. T.J.Katz and P.J.Garratt, J.Amer.Chem.Soc. <u>85</u>, 2853 (1963); ibid. <u>87</u>, 1941 (1965);
 b. E.A.Lalancette and R.E.Benson, ibid. <u>85</u>, 2853 (1963);
 ibid. <u>87</u>, 1941 (1965);
 c. G.Boche, H.Weber, D.Martens and A.Bieberbach, Chem.Ber. <u>111</u>, 2480 (1978);
 d. G.Boche, H.Weber and A.Bieberbach, Chem. Ber. <u>111</u>, 2833 (1978);
 e. G.Boche and A.Bieberbach, Chem.Ber. <u>111</u>, 2850 (1978).
- 2) a. M.Neuenschwander, W.Rutsch and P.Engel, Tetrahedron Lett. <u>1979</u>, 233;
 b. W.Rutsch, A.Frey, M.Neuenschwander and P.Engel, Helvetica Chimica Acta <u>62</u>, 718 (1979).
- 3) M.Neuenschwander and A.Frey, Chimia <u>28</u>, 119 (1974); ibid. <u>29</u>, 212 (1975).
- 4) a. K.Hafner and H.Tappe, Angew.Chem. <u>81</u>, 564 (1969); Angew.Chem.Int.Ed.
 Engl. <u>8</u>, 593 (1969); b. K.Hafner in Aromaticity, Pseudo-Aromaticity,

Antiaromaticity, The Jerusalem Symposium on Quantum Chemistry and Biochemistry III, Jerusalem 1971, p.256.; c. H.Tappe, Dissertation Technische Hochschule Darmstadt 1972. We are grateful to Professor Dr.K. Hafner for making this dissertation available to us.

- 5) a. G.Boche and F.Heidenhain, Angew.Chem. <u>90</u>, 290 (1978); Angew.Chem.Int. Ed.Engl. <u>17</u>, 283 (1978); b. G.Boche and F.Heidenhain, J.Amer.Chem.Soc. <u>101</u>, 738 (1979); c. F.Heidenhain, Dissertation Univ. München, 1979.
- 6) a. A.G.Annastassiou and R.C.Griffith, Tetrahedron Lett. 3067 (1973); b.
 G.Boche and G.Schneider, Tetrahedron Lett. 2449 (1974).
- 7) $J_{8,9}=11-13$ Hz are characteristic for the <u>cis</u>-configuration of H⁸ and H⁹ in <u>4</u>, s.ref. ^{6b)}.
- 8) H.Meerwein, P.Borner, O.Fuchs, J.J.Sasse, H.Schrodt and J.Spille, Chem.
 Ber. <u>89</u>, 2060 (1956); H.Bredereck, F.Effenberger and J.P.Beyerlein, Chem.
 Ber. <u>97</u>, 1834 (1964); G.Schulz, Dissertation Univ. München, 1965.
- 9) Diplomarbeit B.Staudigl, Univ. München, 1979.
- 10) J.Sandström and U.Sjöstrand, Tetrahedron <u>34</u>, 371 (1978).
- 11) G.Boche, F.Heidenhain and B.Staudigl, Angew. Chem. <u>91</u>, 228 (1979); Angew. Chem.Int.Ed.Engl. <u>18</u>, 218 (1979).

<u>Acknowledgment</u>: Support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. Cyclooctatetraene was kindly provided from the BASF AG, Ludwigshafen.

(Received in Germany 19 June 1979)